

Fundamental Change for NASA

Apollo Model

From NASA as the customer funding prime contractors on a cost plus fixed fee basis

Increased Private Sector Resources

Commercial –(COTS/ CRS) Model

To NASA as <u>a</u> customer and partner, working with other customers, financiers, and emerging space companies on fixed price basis to secure capabilities, services and products

Business Model Feasibility

• The shift from small market, highly complex projects to manageable components with appeal to expanded markets enables greater commercial participation

- Evolution of the Discussion -

Defining the Business Space: Beyond LEO

◆Economic sphere fairly well considered to be limited to cislunar

HEO	LUNAR
Satellite servicing	Lunar data/transportation
In-space propulsion	ISRU
Propellant depots	Site surveys
Inflatable structures	Site preparation
Orbital debris removal	Lunar comm/nav

- ♦Some <u>limited</u> commercial services might exist past cis-lunar
 - NEO: in-space propulsion, small landers

So, how do we get the ball rolling within NASA relative to the beyond-LEO commercial opportunities?

NASA "Weighs-In"

ILDD OVERVIEW

- ◆ Data on the design and demonstration of an end-to-end lunar landing mission.
- This includes data associated with:
 - hardware design,
 - development and testing;
 - ground operations and integration;
 - launch;
 - trajectory correction maneuvers;
 - lunar braking,
 - burn and landing;
 - and enhanced capabilities.

Widest Range of Offerors

- ♦BAA was a "full & open" competition
 - inviting widest range of offerors:
 - -commercial, university, foreign.
 - It was not limited to Google Lunar X-Prize.
- NASA centers prohibited from proposing
 - interest stems from lander data <u>outside</u> NASA/field centers.
- ◆Foreign participation allowed per the FAR supplement (1835)
 - ...participation under a "no exchange of funds" policy.

ILDD BAA Business Approach

- Multiple small firm-fixed price, indefinitedelivery/indefinite-quantity contracts
- ♦ Total value up to \$30.1 million up to 5 yrs
- \$10 million max per company
- Partitioned into 4 contract phases
 - 1. Critical Component Demonstration
 - 2. Ground Test/Mission Simulation of Flight Hardware
 - 3. Basic Capabilities of lunar landing mission
 - 4. Enhanced Capabilities

ILDD LANDER BASIC CAPABILITIES

1.Prelaunch
readiness of
the flight
spacecraft
systems

ILDD LANDER BASIC CAPABILITIES

2. In-Flight
Activities

ILDD LANDER BASIC CAPABILITIES

3. Spacecraft lunar landing

Enhanced Lander Capabilities

- Information beneficial in risk-reduction to a human lunar lander design and capability
 - landing using a human mission profile
 - identification of hazards during landing
 - precision landing
 - imagery
 - long-duration surface operations.

ILDD Awarded Companies

ILDD	GLXP TEAM	LOGO
Moon Express	Moon Express privately funded lunar transportation and data services company in San Francisco	MOON'EX MOON'EX ATOMN EXPRESS
Earth Rise	Omega Envoy •University of Central Florida (UCF) •Embry Riddle Aeronautical University	EARTHRISE SPACE INC.
Astrobotic	Astrobotic Carnegie Mellon University, Lockheed Martin Space Systems, Aerojet	OFFICIAL POSTS
		COOK HONOLOGIA

ILDD Awarded Companies

ILDD	GLXP TEAM	LOGO
Draper	Next Giant Leap Charles Stark Draper Laboratory (lead), Inc, Sierra Nevada Corporation, Massachusetts Institute of Technology	DIFFICIAL TEALS
Dynetics	Rocket City Space Pioneers Dynetics, Teledyne Brown Engineering, Andrews Space, Spaceflight Services, Draper	OFFICIAL TESTAP
Team FredNet	Team FredNet Open source collaboration	TOLEN FREDNETS

Other Possible Commercial Lunar Services Applications

LUNAR COMMUNICATIONS AND NAVIGATION

Commercial Lunar Communications & Navigation (C&N) for Lunar Research Park

- Lunar C&N is a good candidate for commercial service provider(s)
- The aggregate C&N portfolio (demand) will grow over the decades
- Early commercial C&N capability could demonstrate reliability & build confidence

Commercial Lunar Communications Opportunities

Lunar orbit

- Conventional relay services, i.e., similar to Earth-orbiting
- Extensions to NASA-provided "essential C&N"
 - More satellites capacity, location
 - High rate services especially HDTV
 - Secondary payloads
 - IP-routed services & network applications

Lunar surface

- WLAN & high rate services
- Ties into services that ride on communications entertainment, news, scientific support, historical recording
- Earth-based
 - Ground stations augment / replace portions of DSN
 - Value-added services
- International collaboration aiming for open, standards-based, commercially & internationally interoperable architecture

In-Situ Resource Utilization

not lunacy, probes find water in moon dirt....

- Multiple space probes found the chemical signature of water all over the moon's surface
 - "this confirms that it's water and hydroxyl" Pieters said
- **♦ Questions remain....**
 - Where did it come from?
 - What is the mechanism that it attaches to soil?
- **♦**Role of ISRU in answering questions...

Mini-ISRU Node and Evaluation of Regolith (MINER)

Commercial Lunar Water

NASA & Commercial Tractor Recover Oxygen from the Lunar Regolith

INFRASTRACTURE

2018-2024 sortie outpost

2025-2034 colonization

2035-2050 settlement

2050 + self-sustaining cities

transportation

- 1. orbital habitation
- 2. autonomous robots
- 3. power storage

facilities

- 4. earth based research facilities
- 5. life support systems technology

power/comm/nav

- 6. solar energy
- 7. ground stations
- 8. pattern recognition software

NOTIONAL

Backup

ILDD Task Descriptions

CLIN	CLIN Title	Value (\$M)
1.	Critical Component Demo	0.5
2.	Ground Test/Mission Simulation of Flight Hardware	0.6
3.	Basic Capabilities	2
3.1	Pre-launch - \$0.5M	
3.2	In-Flight Activities - \$0.5M	
3.3	Lunar Landing - \$1M	
4.	Enhanced Capabilities	6.9
4.1	Human Mission Profile Landing - \$2.5M	
4.2	Identification of Hazards During Landing - \$1M	
4.3	Precision Landing - \$1M	
4.4	Video Survey of Lander Post-Landing - \$0.4M	
4.5	Imagery of Landing Path - \$0.5M	
4.6	Participatory Exploration - \$0.5M	
4.7	Extended Duration Operations - \$1M	
TOTAL		10

LOFT-y Goal

- ♦ Identify potential early "demand" for flight instrumentation for early lunar lander flights.
- **♦ List focuses on "orphan" flight equipment**
 - "Sunk-cost" equipment
 - Pre-exisiting
 - Flight spares, flight qual units, or engineering units
- ♦55 instruments identified
 - 22 science
 - 33 technology

Friday, January 28, 2011 26